×ðÁú¿­Ê±

ÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢

ÉèÖÃlinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢

ÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷ÊÇÏÖ´ú¿Æ¼¼µÄÖ÷ÒªÓ¦ÓÃÁìÓò£¬Í¨¹ýÕûºÏÎïÁªÍø¡¢È˹¤ÖÇÄܺʹóÊý¾ÝµÈÊÖÒÕ£¬¿ÉÒÔʵÏÖ½»Í¨Á÷Á¿ÓÅ»¯¡¢ÎïÁ÷·¾¶ÍýÏëºÍÔËÊäЧÂÊÌáÉý¡£ÔÚÕâ¸öÀú³ÌÖУ¬ÉèÖÃLinuxϵͳ³ÉΪÖÁ¹ØÖ÷ÒªµÄÒ»²½¡£±¾ÎĽ«ÏÈÈÝÔõÑùÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄ¿ª·¢£¬Í¬Ê±ÌṩÏìÓ¦µÄ´úÂëʾÀý¡£

Ê×ÏÈ£¬ÎÒÃÇÐèҪװÖÃÐëÒªµÄÈí¼þ°üºÍÒÀÀµÏî¡£ÔÚUbuntuϵͳÖУ¬¿ÉÒÔʹÓÃÒÔÏÂÏÂÁî×°ÖÃËùÐèµÄÈí¼þ°ü£º

sudo apt-get update
sudo apt-get install -y python3 python3-pip
pip3 install numpy pandas tensorflow

µÇ¼ºó¸´ÖÆ

ÉÏÊöÏÂÁî»á¸üÐÂϵͳÈí¼þ°üÐÅÏ¢£¬²¢×°ÖÃPython3ºÍÏà¹ØµÄÈí¼þ°ü£¬ÆäÖÐTensorFlowÊÇÒ»¸öÊ¢ÐеĻúеѧϰ¿ò¼Ü£¬ÔÚÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷ÖÐÆÕ±éÓ¦Óá£

½ÓÏÂÀ´£¬ÎÒÃÇÐèÒªÉèÖÃÇéÐαäÁ¿ÒÔ±ãϵͳ¿ÉÒÔ׼ȷµØʶ±ð²¢ÔËÐÐPython³ÌÐò¡£ÔÚUbuntuϵͳÖУ¬¿ÉÒÔͨ¹ýÐÞ¸Ä.bashrcÎļþÀ´ÉèÖÃÇéÐαäÁ¿¡£Ê×ÏÈ£¬Ê¹ÓÃÒÔÏÂÏÂÁî·­¿ª.bashrcÎļþ£º

nano ~/.bashrc

µÇ¼ºó¸´ÖÆ

È»ºó£¬ÔÚÎļþĩβÌí¼ÓÒÔÏÂÐУº

export PATH=$PATH:/usr/local/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

µÇ¼ºó¸´ÖÆ

ÉúÑÄÎļþ²¢Í˳ö¡£ÔËÐÐÒÔÏÂÏÂÁîʹÉèÖÃÉúЧ£º

source ~/.bashrc

µÇ¼ºó¸´ÖÆ

ÏÖÔÚ£¬ÎÒÃÇ¿ÉÒÔ×îÏÈ¿ª·¢ÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄÏà¹Ø¹¦Ð§¡£ÏÂÃæÊÇÒ»¸ö¼òÆÓµÄʾÀý´úÂ룬ÑÝʾÁËÔõÑùʹÓÃTensorFlow¾ÙÐн»Í¨Á÷Á¿Õ¹Íû£º

import numpy as np
import pandas as pd
import tensorflow as tf

# µ¼ÈëÊý¾Ý¼¯
data = pd.read_csv('traffic_data.csv')
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

# Êý¾ÝÔ¤´¦Öóͷ£
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# ¹¹½¨Éñ¾­ÍøÂçÄ£×Ó
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=32, activation='relu', input_shape=(X_train.shape[1],)))
model.add(tf.keras.layers.Dense(units=16, activation='relu'))
model.add(tf.keras.layers.Dense(units=1, activation='linear'))

# ±àÒ벢ѵÁ·Ä£×Ó
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train, batch_size=32, epochs=100, verbose=1)

# Õ¹Íû²¢ÆÀ¹ÀÄ£×Ó
y_pred = model.predict(X_test)
mse = tf.keras.losses.mean_squared_error(y_test, y_pred).numpy()
print('Mean Squared Error:', mse)

µÇ¼ºó¸´ÖÆ

ÉÏÊö´úÂëʹÓÃÁËÒ»¸ö¼òÆÓµÄÉñ¾­ÍøÂçÄ£×ÓÀ´Õ¹Íû½»Í¨Á÷Á¿¡£Ïȵ¼ÈëÊý¾Ý¼¯£¬È»ºó¾ÙÐÐÊý¾ÝÔ¤´¦Öóͷ££¬°üÀ¨²ð·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯£¬²¢¾ÙÐÐÌØÕ÷Ëõ·Å¡£½ÓÏÂÀ´£¬¹¹½¨Éñ¾­ÍøÂçÄ£×Ó£¬²¢Ê¹ÓÃAdamÓÅ»¯Æ÷ºÍ¾ù·½Îó²îËðʧº¯Êý±àÒëÄ£×Ó¡£×îºó£¬¾ÙÐÐÄ£×ÓѵÁ·¡¢Õ¹ÍûºÍÆÀ¹À¡£

³ýÁËÖÇÄܽ»Í¨µÄÁ÷Á¿Õ¹Íû£¬ÎÒÃÇ»¹¿ÉÒÔʹÓÃLinuxϵͳ֧³ÖµÄÆäËû¹¦Ð§À´¿ª·¢ÖÇÄÜÎïÁ÷µÄ·¾¶ÍýÏëºÍÔËÊäÓÅ»¯¡£ÀýÈ磬ÎÒÃÇ¿ÉÒÔʹÓÿªÔ´µÄ·¾¶ÍýÏë¿â£¬ÈçGraphhopper»òOSRM£¬À´ÅÌËã×î¶Ì·¾¶¡£ÎÒÃÇ»¹¿ÉÒÔʹÓÃLinuxϵͳÌṩµÄÍøÂ繤¾ß£¬ÈçIP·ÓɱíºÍQoS£¨Ð§ÀÍÖÊÁ¿£©ÉèÖã¬À´ÓÅ»¯ÎïÁ÷ÔËÊäµÄÍøÂçͨѶ¡£

×ÛÉÏËùÊö£¬Í¨¹ýÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄ¿ª·¢£¬ÎÒÃÇ¿ÉÒÔʹÓÃÇ¿Ê¢µÄ¿ªÔ´¹¤¾ßºÍ¿â£¬ÊµÏÖ½»Í¨Á÷Á¿Õ¹Íû¡¢Â·¾¶ÍýÏëºÍÔËÊäÓÅ»¯µÈ¹¦Ð§¡£Ï£Íû±¾ÎÄÌṩµÄÉèÖúʹúÂëʾÀýÄܹ»×ÊÖú¶ÁÕ߸üºÃµØ¿ªÕ¹Ïà¹ØµÄ¿ª·¢ÊÂÇé¡£

ÒÔÉϾÍÊÇÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í×ðÁú¿­Ê±ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ×ðÁú¿­Ê±ÊµÊ±ÐÞÕý»òɾ³ý¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ×ðÁú¿­Ê±

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎ壬9:30-18:30£¬½ÚãåÈÕÐÝÏ¢

QR code
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿