pythonÅ£¶Ùµü´ú¹«Ê½Ôõô¿´
Å£¶Ùµü´ú·¨ÔÚ python ÖÐÓÐÁ½ÖÖ³£ÓÃʵÏÖ·½·¨£ºsympy Ìṩ·ûºÅÇó½â£¬¿ÉÒÔ»ñµÃ·ûºÅ½â£¬µ«Çó½âËÙÂʽÏÂý¡£numpy ÌṩÊýÖµÇó½â£¬·µ»ØÊýÖµ½â£¬ËÙÂʸü¿ì¡£
Å£¶Ùµü´ú¹«Ê½ÔÚ Python ÖеÄÓ¦ÓÃ
Å£¶Ùµü´ú¹«Ê½ÊÇÒ»ÖÖÇ¿Ê¢µÄËã·¨£¬ÓÃÓÚÇó½â·ÇÏßÐÔ·½³ÌµÄ¸ù¡£ÔÚ Python ÖУ¬¿ÉÒÔʹÓöàÖÖÒªÁìʵÏÖÅ£¶Ùµü´ú·¨£¬±¾ÎĽ«ÏÈÈÝÁ½ÖÖ×î³£ÓõÄÒªÁ죺SymPy ºÍ NumPy¡£
SymPy
SymPy ÊÇÒ»¸ö¹¦Ð§Ç¿Ê¢µÄ Python ¿â£¬ÓÃÓÚ·ûºÅÊýѧ¡£ËüÌṩÁËÒ»¸ö·ûºÅ»¯µÄÅ£¶Ùµü´úº¯Êý sympy.solve()£¬¿ÉÒÔÇó½â·ÇÏßÐÔ·½³ÌµÄ·ûºÅ½â¡£¸ÃÒªÁìµÄÓ÷¨ÈçÏ£º
Á¬Ã¦Ñ§Ï°¡°PythonÃâ·ÑѧϰÌõ¼Ç£¨ÉîÈ룩¡±£»
import sympy def newton_sympy(f, x0, tol=1e-6, max_iter=100): x = sympy.Symbol('x') for _ in range(max_iter): x0_new = x0 - f.subs(x, x0) / f.diff(x).subs(x, x0) if abs(x0_new - x0) <p><strong>NumPy</strong></p><p>NumPy ÊÇÒ»¸öÓÃÓÚ¿ÆѧÅÌËãµÄ Python ¿â¡£ËüÌṩÁËÒ»×éÇ¿Ê¢µÄÊýÖµÇó½âÆ÷£¬°üÀ¨Å£¶Ùµü´úº¯Êý scipy.optimize.newton(). ¸ÃÒªÁìµÄÓ÷¨ÈçÏ£º</p><pre class="brush:php;toolbar:false">import numpy as np from scipy.optimize import newton def newton_numpy(f, x0, tol=1e-6, max_iter=100): return newton(f, x0, tol=tol, maxiter=max_iter)
µÇ¼ºó¸´ÖÆ
Ñ¡ÓÃÄÄÖÖÒªÁ죿
ÔÚÑ¡ÔñÄÄÖÖÒªÁìʱ£¬¿ÉÒÔ˼Á¿ÒÔÏÂÒòËØ£º
- ·ûºÅ»¯ vs. ÊýÖµ»¯£º SymPy µÄÒªÁìÌṩ·ûºÅ½â£¬¶ø NumPy µÄÒªÁìÌṩÊýÖµ½â¡£·ûºÅ½â¸üͨÓ㬵«¿ÉÄÜÄÑÒÔÅÌËã¡£
- ËÙÂÊ£º NumPy µÄÒªÁìͨ³£±È SymPy µÄÒªÁì¸ü¿ì£¬ÓÉÓÚËüʹÓÃÊýÖµÇó½âÆ÷¡£
- Ò×ÓÃÐÔ£º SymPy µÄÒªÁì¸üÒ×ÓÚʹÓã¬ÓÉÓÚ²»ÐèÒªÌṩµ¼Êýº¯Êý¡£
ƾ֤ÕâЩÒòËØ£¬¹ØÓÚÐèÒª·ûºÅ½â»òÒ×ÓÃÐÔ¸üÖ÷ÒªµÄÓ¦Óã¬ÍƼöʹÓà SymPy¡£¹ØÓÚÐèÒªËÙÂÊ»òÊýÖµ½âµÄÓ¦Óã¬ÔòÍƼöʹÓà NumPy¡£
ÒÔÉϾÍÊÇpythonÅ£¶Ùµü´ú¹«Ê½Ôõô¿´µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡